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Abstract

Somatic copy number alterations (SCNAs) are a predominant type of oncogenomic alterations that affect a large proportion of the
genome in the majority of cancer samples. Current technologies allow high-throughput measurement of such copy number aberrations,
generating results consisting of frequently large sets of SCNA segments. However, the automated annotation and integration of
such data are particularly challenging because the measured signals reflect biased, relative copy number ratios. In this study, we
introduce labelSeg, an algorithm designed for rapid and accurate annotation of CNA segments, with the aim of enhancing the
interpretation of tumor SCNA profiles. Leveraging density-based clustering and exploiting the length–amplitude relationships of SCNA,
our algorithm proficiently identifies distinct relative copy number states from individual segment profiles. Its compatibility with
most CNA measurement platforms makes it suitable for large-scale integrative data analysis. We confirmed its performance on both
simulated and sample-derived data from The Cancer Genome Atlas reference dataset, and we demonstrated its utility in integrating
heterogeneous segment profiles from different data sources and measurement platforms. Our comparative and integrative analysis
revealed common SCNA patterns in cancer and protein-coding genes with a strong correlation between SCNA and messenger RNA
expression, promoting the investigation into the role of SCNA in cancer development.
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INTRODUCTION
Genomic instability is a nearly ubiquitous hallmark of cancer.
Cancer cells often lose the ability to maintain genome integrity,
but the molecular basis of genomic instability is not always clear
[1]. One consequence of genomic instability is the occurrence of
somatic copy number alterations (SCNAs), which are changes in
the copy number of chromosome segments from the regional
allele count in somatic (i.e. post germline) tissues. SCNAs rep-
resent the by extent largest contributions to genomic variation
in cancer, with genetic components affected by SCNA frequently
conferring selective advantages to affected cells, thereby promot-
ing cancer initiation and progression [2].

Various methods are employed to detect SCNAs, ranging from
(molecular-)cytogenetic and locus-specific techniques such as
karyotype analysis, interphase fluorescence in-situ hybridization
(FISH) and spectral karyotyping (SKY) to genomic microarrays and
next-generation sequencing (NGS) methods. However, achieving
a comprehensive capture of all CNA information remains chal-
lenging with any individual approach, given the distinct detection
biases and limitations inherent in different technologies and
platforms. These differences manifest in various aspects, such
as the upper and lower detection sensitivity for CNA events of
differing sizes, the requirement for matched reference samples
and the capability to detect allele-specific CNA events [3], and are
compounded by varying processing pipelines.

In the meta-analysis of large and heterogeneous SCNA
datasets, a major challenge lies in interpreting and comparing
segmented copy number profiles derived from raw intensity
data obtained using techniques such as microarrays and NGS.
Frequently, such segmented CNA profiles constitute the solely
accessible data due to privacy concerns related e.g. to the
exposure of single nucleotide polymorphism (SNP) data. Typically,
the available CNA data are represented through genomic
segments with the relative abundance of the DNA expressed
as the log R ratio (logR), calculated by taking the log2 of the
ratio between the observed intensity of a sample and a reference
intensity. Notably, it is a normalized metric, spotlighting changes
in relative copy numbers rather than an absolute copy number at
a given genomic location. However, such a representation leads
to challenges when comparing SCNA profiles across datasets,
which are further compounded by the fact that signal scale and
noise levels can vary widely across samples due to variations in
clonal sample purity, ploidy, experimental steps in bio-sample
preparation, measurement platform and other factors.

To overcome the challenges of inter-sample comparisons, some
tools such as VarScan2 [4], CODEX [5] and CNVkit [6] adopt fixed,
empirical thresholds to classify segments with signals beyond
these thresholds into ‘duplication’ or ‘deletion’ CNA categories.
However, the selection of these thresholds can significantly
impact the results of such analyses. Lower cut-off values improve
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the sensitivity of variant detection—especially for samples with
admixed non-cancer tissue—but can lead to many false positive
calls. In contrast, larger cut-off values may enhance the calling
precision but risk overlooking true variants, thereby introducing
systematic bias particularly due to cancer-specific differences
in sample purity. Some studies [7, 8] optimize this process
by incorporating purity estimation and adjusting thresholds
based on the estimated purity. However, this added estimation
complicates SCNA profiling by necessitating manual selection of
the most suitable solutions [9]. Several complicated models have
been developed to improve SCNA detection, including Gaussian
mixture models [10, 11], hidden Markov models [12–14] or a
combination of both [15]. Although theoretically promising for
providing more accurate CNA calls, these models often require
raw data from individual measurement platforms that may not
be accessible, or allele-specific data which certain technologies
lack. Furthermore, most of these methods are designed to provide
an absolute copy number quantification, rather than addressing
the identification of distinct empirical CNA types. These types,
characterized not only by CNA amplitude but also by CNA length,
include broad CNAs and focal CNAs. These types differ in size,
magnitude and potential functional implications [16]. While
GISTIC2 [17] can distinguish between these CNA types or levels,
its primary objective is to identify recurrent amplified or deleted
genomic regions across a set of samples, rather than accurately
determining CNA levels in individual samples. Thus, the fast and
accurate annotation of individual CNA segment profiles remains
a challenging problem in the field of SCNA profiling.

To address the above challenges, we developed a novel method
called labelSeg. This method not only accurately annotates indi-
vidual CNA profiles but also scales seamlessly to accommodate
large-scale studies encompassing numerous samples. By utilizing
estimated calling thresholds from individual segment profiles,
labelSeg identifies various levels of CNAs without requiring prior
information such as purity estimation. Its one-dimensional clus-
tering approach, coupled with a direct cut-off strategy using the
estimated thresholds, enables rapid processing of CNA profiles.
The only input required is copy number segment profiles, which
can be generated by most CNA measurement platforms and
processing pipelines. These attributes make labelSeg particularly
well-suited for large-scale meta-analyses. In validation cohorts
from The Cancer Genome Atlas (TCGA) [18] covering diverse
cancer types, labelSeg showed superior performance compared
with GISTIC2 and fixed thresholds. Moreover, through an inte-
grative analysis spanning four research projects, involving >2000
glioblastoma samples and >1200 lung squamous cell carcinoma
(LUSC) samples, labelSeg demonstrated its capability to achieve
fast, accurate and comprehensive CNA profiling across a diverse
and extensive collection of cancer samples. This achievement
serves as a cornerstone for prospective comparative CNA analysis
in cancer research.

MATERIALS AND METHODS
labelSeg combines segment length and logR values to estimate
appropriate thresholds for calling different levels of SCNA
(Figure 1A). The comprehensive implementation of this algorithm
is detailed in Figure 1B. There are several assumptions. First,
the majority of detected copy number events are driven by
predominant clones. It is a prevalent biological assumption that
serves as the foundation for most contemporary algorithms
utilized in the detection of SCNAs [19]. Under this assumption,
segments of individual profiles form distinct clusters in logR

values. These clusters are likely to represent different copy
number states. Second, arm-level SCNAs are generally low copy
number changes, whereas focal SCNAs can be of very high
amplitude. This length–amplitude relationship of SCNA, which
has been previously reported [16], allows reliable discrimination
of different SCNA levels, including low-level duplication/deletion
and high-level duplication/deletion.

Currently, the definitions of CNA magnitudes vary across dif-
ferent studies [20–26]. In general, high-level CNAs involve sub-
stantial changes in the copy number of chromosomal segments,
with high-level duplication indicating the presence of multiple
copies of certain genomic regions, and high-level deletion indicat-
ing either the complete loss or substantial reduction of specific
regions. In contrast, low-level CNAs involve smaller changes in
copy number compared with their high-level counterparts. In this
study, we proposed the transformation of absolute copy numbers
to relative CNA levels, grounded in a consensus derived from the
reviewed studies. Specifically, we define high-level duplication as
three or more gains compared with the ploidy, low-level duplica-
tion as one to two gains, high-level deletion as the absence of any
copies and low-level deletion as partial loss.

Algorithm
Clustering
The segments in a sample are divided into long and short seg-
ments based on their length relative to the corresponding chro-
mosomes. The criterion for segment size separation was deter-
mined based on the empirical distribution of segments derived
from a combined dataset across various tumor types (Supplemen-
tary Figure S1). Segments occupying ≥20% of a chromosome are
considered as long segments, and segments occupying <20% of
a chromosome are considered as short segments. Long and short
segments are subjected to distinct clustering processes based on
their logR values. The rationale underlying this choice is rooted in
the intrinsic characteristics of long and short segments. Typically,
long segments represent broad CNAs and tend to be derived from
more measurement markers. As a consequence, long segments
exhibit much lower variance and scales in logR values compared
with short segments.

We employ the Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN) [27] algorithm for clustering. There
are two important parameters in DBSCAN: ε and minPts. The
parameter minPts is the minimum number of points required to
form a dense region. Intuitively, this value is set to 1 to enable
the formation of clusters even with a single segment (e.g. focal
amplification). However, users can customize this parameter, and
we conducted a benchmark to explore variations in this param-
eter, as detailed in the Results section. The parameter ε is the
maximum distance between two points for one to be considered
in the neighborhood of the other. In our algorithm, we determine
ε using a self-adaptive method. Initially, these values are set at
predetermined levels (0.05 and 0.1 for long and short segment
clustering, respectively). Subsequently, ε is systematically reduced
by 0.01 until the standard deviations of logR in all clusters fall
below specified thresholds (0.05 and 0.1 for long and short seg-
ment clustering, respectively). As a result of this variance con-
trol, it is possible for segments sharing the same relative copy
number state to form multiple clusters in logR values. While this
phenomenon might potentially lead to an underestimation of the
genuine logR variance within the same copy number state, this
underestimation does not hinder the determination of suitable
thresholds. This resilience is attributed to both a variance adjust-
ment (see Supplementary Data Section 1.1) and the utilization of
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Figure 1. Workflow of labelSeg. (A) Input: The segmented data file provides segment lengths and associated numeric values (logR) for each segment,
which are used in subsequent calculations. In the illustration below, each dot represents a single segment, with its normalized segment length displayed
on the Y-axis and its logR value displayed on the X-axis. (B) Algorithm: Step 1: Segments are categorized into long and short segments using a cutoff value
(0.2) marked by a dashed horizontal line. Long segments are clustered in the logR space (X-axis) using DBSCAN, and these clusters are ranked based
on the sum of segment lengths within each cluster. A feature value is computed for each cluster. Step 2: The baseline is determined using the feature
value and rank. Step 3: Low-level target clusters are then identified using the distance of the feature value to the baseline and their respective ranks.
Step 4: Short segments are also clustered in the logR space using DBSCAN with a larger radius, and these clusters are ranked based on corresponding
feature values. Step 5: High-level target clusters are identified considering the distance of the feature value to the baseline, the predefined low-level
target clusters and their respective ranks. Calling thresholds are subsequently calculated based on these target clusters. Step 6: The cutoff determined
by these estimated thresholds is applied to the segments. (C) Output: The original segment data file is augmented with an additional column of SCNA
labels, representing relative copy number states. (D) Uniform clustering: A specialized clustering strategy employed in labelSeg when the clustering
method utilizes HDBSCAN, an extension of DBSCAN.

specific ‘target clusters’ in our threshold estimation procedure.
These ‘target clusters’ are meticulously identified through rank-
ing methodologies that ensure precise threshold determination
(elaborated further in the following sections).

Furthermore, our algorithm accommodates alternative cluster-
ing methods: Ordering Points To Identify the Clustering Structure
(OPTICS) [28] and Hierarchical Density-Based Spatial Clustering
(HDBSCAN) [29]. Both methods are extensions of the DBSCAN
framework, simplifying the parameterization by removing the
need to choose an appropriate ε value. HDBSCAN is a hierarchical
extension for varying ε values and automatically determining the
optimal number of clusters. It requires only the minimum cluster
size (minPts) as input. Given that clustering by segment length
intends to adapt to clusters of varying density while HDBSCAN
is able to overcome such limitation, uniform clustering across
all segments via HDBSCAN is reasonable and becomes a viable
choice within our algorithm (Figure 1D). OPTICS replaces ε with
an upper limit for the neighborhood size (typically rather high
and set to infinity in labelSeg), generating an ordered list of data
points such that points that are spatially closest become neigh-
bors in the ordering. Although OPTICS does not require the ε

parameter, it does require a threshold to identify clusters from
the OPTICS ordering. In our implementation, the value of the
splitting threshold is set to the same value as the ε parameter
in DBSCAN, resulting in the actual output of OPTICS comparable
with DBSCAN. It is noted that the effect of the minPts parameter

in OPTICS and HDBSCAN is different from its role in DBSCAN, as
it not only defines the minimal cluster size but also contributes
as a ‘smoothing’ factor that involves density estimates.

Calculate feature value for each cluster
Following the clustering process, a feature value, denoted as Vci , is
computed for each segment group labeled as cluster ci. Depending
on whether the cluster corresponds to long or short segments,
the calculation methodology varies. For clusters comprising long
segments, the feature value is determined as the weighted mean
of logR values from segments within the same cluster. Each of
these logR values is assigned a weight based on its corresponding
normalized segment length relative to the chromosome where it
occupies. This weighted mean is used for calculating thresholds
in identifying low-level SCNAs. In short segment clusters, the
feature value is the logR value closest to 0 within the cluster, e.g.
the minimum value in a cluster of positive logR values or the
maximum value in a cluster of negative logR values. These feature
values within the short segment clusters are instrumental in the
derivation of thresholds for detecting high-level SCNAs.

Estimate baseline
The baseline, representing segments with a neutral copy number
state, is determined from the long segment clustering results.
Specifically, the cluster that exhibits a feature value closest to 0
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and occupies ≥40% of the total measured genomic region is con-
sidered as the baseline cluster, denoted as cbaseline. In situations
where data noise is pronounced or the profile is over-segmented,
it is conceivable that no long segment clusters will span over 40%
of the total length. In such instances, a step-wise reduction of the
percentage limit, from an initial value of 40 to 20%, by a decrement
of 10%, is performed until the baseline cluster is found.

During this step, users can interactively adjust the baseline
upwards or downwards. The algorithm will subsequently identify
the cluster that most closely aligns with the predefined baseline
cluster while satisfying the aforementioned criteria.

Estimate low-level calling threshold
The next step is to find clusters that represent low-level SCNA
events. To increase tolerance to sub-clone effects, the remaining
long segment clusters are ranked in descending order based
on the cumulative segment length, denoted by {c1, c2, ..., ck}. The
target low-level clusters are determined as follows.

clow-dup target = ca,

where

a = arg min
i∈{1,...,k}

Vcbaseline + 0.15 ≤ Vci < Vcbaseline + 0.7; (1)

clow-del target = cb,

where

b = arg min
i∈{1,...,k}

Vcbaseline − 1.5 < Vci ≤ Vcbaseline − 0.15 (2)

‘Target cluster’ is the cluster used to estimate calling thresh-
olds. The lower bounds in Equations (1) and (2), set at ±0.15, aim
to filter out noise from true SCNAs and can be tuned by users,
although default values have been chosen based on empirical
experience. The upper bounds are set to avoid calling high-level
SCNAs and may also be adjusted based on prior knowledge. The
default upper bound for duplication, 0.7, is derived from the theo-
retical logR value observed when the event of 5-copy gain occurs
in 70% of diploid cells in the analyzed tissue. Similarly, the default
upper bound for deletion, −1.5, is based on the theoretical logR
value corresponding to a homozygous deletion event occurring
in 70% of diploid cells in the measured tissue. When segment
profiles exhibit high quality—usually indicative of high tumor
purity and low measurement noise—employing higher bounds
has the potential to improve the calling performance (Supple-
mentary Figure S3B). To avoid overfitting, all results adhere to the
default bounds.

To ensure calling sensitivity, the standard deviation of logR
values from segments within the target cluster is included in the
calculation of calling thresholds. Let Tlow-level SCNA represent the
calling threshold for low-level SCNA, and σci denote the standard
deviation of logR in the cluster ci. The calculation proceeds as
follows:

Tlow-level duplication = Vclow-dup target − 2 × σclow-dup target ; (3)

Tlow-level deletion = Vclow-del target + 2 × σclow-del target (4)

Estimate high-level calling threshold
The process of determining high-level calling thresholds inte-
grates the clustering of short segments, the utilization of pre-
viously identified target low-level clusters and the numeric cor-
relation of logR distances among distinct copy number states.

An interesting observation arises regarding the logR distances
between low-level copy changes and neutral copy changes, as well
as between high-level copy changes and neutral copy changes.
These logR distances demonstrate a robust association with vary-
ing tumor sample purity and ploidy. Further insights into this phe-
nomenon can be found in Supplementary Data Section 1.2 and
Supplementary Figure S2. By leveraging this established correla-
tion, as shown in Equations (5) and (6), the algorithm effectively
finds a reliable calling threshold within heterogeneous samples
to distinguish between high-level duplications/deletions and their
low-level counterparts.

Short segment clusters are ranked by feature values in ascend-
ing order, denoted as {c1, c2, ..., cm}. The target high-level clusters
are determined as follows:

chigh-dup target = cc,

where

Vcc > Vclow-dup target

s1 = Vclow-dup target − Vcbaseline

c = arg min
i∈{1,...,m}

Vci − Vcbaseline

s1
≥ 2.2 − 0.6 × s1; (5)

chigh-del target = cd,

where

Vcd < Vclow-del target

s2 = Vcbaseline − Vclow-del target

d = arg max
i∈{1,...,m}

Vcbaseline − Vci

s2
≥ 2 (6)

Given the unique characteristics of high-amplitude focal
SCNAs and low-amplitude broad SCNAs, such as their different
potential to pinpoint oncogenes and tumor-suppressor genes,
the identification of high-level SCNAs is refined by calling only
those focal SCNAs with amplitudes surpassing those of broad
SCNAs. The calling threshold for high-level SCNAs is calculated
as follows. Let VL be the set of logR values of all previously defined
long segments,

Thigh-level duplication = max(Vchigh-dup target , max(VL) + 0.01); (7)

Thigh-level deletion = min(Vchigh-del target , min(VL) − 0.01) (8)

SCNA Calling
Once the estimation of calling thresholds is complete, the sub-
sequent step is to assign labels indicating relative copy number
states or SCNA levels to each segment. The classification is carried
out according to the following principles:

• Segments with logR ≤ Thigh-level del are labeled as ‘-2’, indicat-
ing high-level deletion. If the sample is diploid, the high-level
deletion is a homozygous deletion.

• Segments with logR > Thigh-level del and ≤ Tlow-level del are
labeled as ‘-1’, meaning low-level deletion.

• Segments with logR ≥ Tlow-level dup and < Thigh-level dup are
labeled as ‘+1’, meaning low-level duplication.

• Segments with logR ≥ Thigh-level dup are labeled as ‘+2’, mean-
ing high-level duplication.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/25/2/bbad541/7595616 by U

niversity Library Zurich / Zentralbibliothek Zurich user on 02 February 2024

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad541#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad541#supplementary-data


labelSeg | 5

Figure 2. Performance on simulated data. The average F1 scores across samples were calculated for different levels of SCNA calling.

• Segments with logR > Tlow-level del and < Tlow-level dup are
labeled as ‘0’, meaning no changes in total non-allelic copy
numbers.

There are other exceptions. For example, in cases where the
segment profile is over-segmented and no long segments are
present, or only high-level focal SCNAs occur within a sample,
specific strategies for handling these exceptions are elaborated
in Supplementary Data Section 1.3.

RESULTS
Performance on simulated data
The assessment of labelSeg’s performance involved a systematic
examination of different clustering methods and variations in
the minPts parameter, as depicted in Supplementary Figure S3A.
The evaluation was conducted using simulated segment data that
encompassed different scenarios, including variations in sample
purities and noise levels (refer to Supplementary Data Section
2.1 for data generation details). The results from this benchmark
indicated a limited impact of parameter choices on the calling
performance. Consequently, our attention here is focused on two
key configurations within labelSeg that were chosen to be rep-
resentative: distinct DBSCAN clustering with minPts set to 1 for
both short and long segments, and uniform HDBSCAN clustering
with minPts set to 10. These selections were made based on their
specific advantages. The former configuration offers computa-
tional simplicity, while the latter leverages the strengths of HDB-
SCAN, resulting in a specialized clustering strategy (illustrated
in Figure 1D). Importantly, these variations do not affect other
crucial steps in the algorithm, including individual feature value
computation, cluster ranking and threshold determination for
both low- and high-level SCNAs.

In the simulated scenario with moderate noise, we compared
the performance of labelSeg with the application of optimal
thresholds tailored to specific purity levels (Figure 2). The
results were consistent with expectations: optimal thresholds
demonstrated superior overall performance when matched with
the true tumor purity they were designed for. However, the
effectiveness of these thresholds diminished when applied to
samples deviating substantially from the target purity. Conversely,
labelSeg consistently exhibited commendable F1 scores across
all simulated scenarios, showcasing its robustness across a
broad spectrum of tumor sample purity levels. Notably, the two
parameter sets within labelSeg showed subtle differences. DBSCAN

clustering with minPts set at 1 exhibited enhanced adaptability in
scenarios characterized by low sample purity, whereas HDBSCAN
uniform clustering with minPts set at 10 excelled in situations
of higher sample purity. Even in scenarios with exceptionally
high noise levels, all compared methods displayed compromised
performance, but this conclusion remained unchanged (Supple-
mentary Figure S3A).

Performance on real data
To evaluate the performance of labelSeg on real biological data, we
analyzed two TCGA datasets comprising 596 glioblastoma (GBM)
and 503 LUSC samples. Both of these tumor types are known to be
extensively affected by SCNAs, and these two cohorts have previ-
ously been shown to have a difference in average sample purity
[30–32]. The evaluation involved a comparison with alternative
methodologies, including GISTIC2, a set of more stringent thresh-
olds {±0.3, ±1} and a set of more relaxed thresholds {±0.15, ±0.7}
(Figure 3). It is worth noting that due to GISTIC2’s gene-level
profiling approach for relative copy number states, we conducted
a conversion from segment-level labels to gene-level labels for
both labelSeg outputs and fixed threshold callings. The rationale
for excluding GISTIC2 from simulated data validation stems from
GISTIC2’s consideration of functional genomic elements in the
genome and their varying background rates of SCNAs, a facet
not accounted for in the simulation. Consequently, GISTIC2’s
applicability was limited in the simulation context. Given the
inherent challenge in determining absolute truth within real
biological data, we used ASCAT2 [33] estimates as a benchmark
reference. These estimates provide gene-level absolute copy num-
bers extracted from the same datasets, which are then converted
into relative CNA levels per gene. While ASCAT2 may not be
a gold standard, it benefits from leveraging allelic information,
a dimension not included in the benchmarked methods. As a
result, the alignment with ASCAT2 calls offers a glimpse into the
proficiency of SCNA amplitude profiling. Further details regarding
the conversion of SCNA label from segment to gene can be found
in Supplementary Data Section 2.2.

In the GBM cohort, labelSeg and the stringent threshold
(Threshold_0.3_1) had superior performance in terms of F1
score and accuracy (paired Wilcoxon rank sum test) (Figure 3A).
Conversely, the relaxed threshold (Threshold_0.15_0.7) had the
worst performance, primarily due to compromised precision. This
performance discrepancy can also be observed in the distribution
of absolute copy number changes for different SCNA levels
(Figure 3B). For high-level deletions, labelSeg tended to identify
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Figure 3. Performance on TCGA datasets. (A) The top panel displays the macro average of F1 scores across different SCNA classes and overall accuracy
for each sample. The bottom panel shows the average precision and recall across samples when calling different levels of SCNA. (B) Distribution of
absolute copy number change compared with ploidy. For each SCNA level, the average copy change across genes with the corresponding SCNA was
considered for each sample.
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Table 1: Summary of the glioblastoma segment datasets.

Data resource Number of samples Sample type Platform

TCGA 596 patient tumor samples Affymetrix SNP 6.0
Progenetix 1390 patient tumor samples and cancer cell lines CGH array and SNP array
CPTAC 97 patient tumor samples WGS
CCLE 64 cancer cell lines WES and WGS

CNAs with two or four copies reduction compared with the
overall ploidy, suggesting possible complete loss. In contrast,
the relaxed threshold was more likely to call CNAs with one
copy loss, indicating potential overcalling. Transitioning to the
LUSC cohort, labelSeg once again demonstrated its prominence
in terms of F1 score and accuracy, followed by GISTIC2 and the
relaxed threshold. Interestingly, the stringent threshold exhibited
limitations in this dataset due to issues of recall, unlike its
performance in the GBM dataset. This underscores the inherent
challenge posed by fixed thresholds in accommodating diverse
tumor purities. As indicated in previous studies, the average
sample purity in GBM samples tends to surpass that in LUSC
samples [32], which may underlie the performance discrepancy
across the two datasets observed in all benchmarked methods.
Remarkably, labelSeg revealed its strengths in the LUSC dataset by
achieving higher assessment scores and producing sharper peaks
in the distribution of absolute copy number changes for low-
level SCNA calling. These sharp peaks indicate more consistent
copy number changes within individual SCNA levels, further
highlighting labelSeg’s prowess in handling the more complex
dataset. Moreover, labelSeg showed similar performance across the
two representative parameter sets, and additional benchmarking
for parameterization can be found in Supplementary Figure
S4. In general, when using separate clustering by segment
length, it is important to note that large values for minPts can
lead to errors due to the limited number of segments in each
clustering. Conversely, small minPts values tend to work well with
DBSCAN and OPTICS. For HDBSCAN, however, its performance
tends to improve when combined with larger values for minPts,
regardless of whether a uniform or separate clustering strategy is
used.

To demonstrate the compatibility of our method across dif-
ferent tumors and platforms, we conducted benchmarking on
two additional datasets. We analyzed the acute myeloid leukemia
(LAML) dataset from TCGA, which is characterized by a lower
frequency of SCNAs in terms of affected sample proportion [34]
and we examined a non-TCGA dataset from non-small cell lung
cancer samples, generated by MSK-IMPACT targeted sequencing
[35, 36]. In the LAML cohort, labelSeg and the stringent threshold
showed superior performance (Supplementary Figure S5). In the
MSK-IMPACT dataset, which exhibits higher noise compared with
TCGA data generated by SNP arrays, labelSeg displayed a clear
advantage when employing separate DBSCAN clustering for both
short and long segments with a minPts value of 1 (Supplementary
Figure S6).

Taking into account factors such as algorithm complexity
and robustness to complicated samples, as demonstrated by the
benchmarked results in both simulated and real data, we have
designated separate DBSCAN clustering for both short and long
segments with a minPts value of 1 as the default parameters for
our method.

Integrative analysis of heterogeneous SCNA
profiles
By design, labelSeg could provide a reliable calling no matter
how heterogeneous the data are in terms of measurement plat-
forms (input is segment file), tumor sample purities and noise
(clustering-based estimation). To illustrate its potential for precise
and robust SCNA profiling—particularly in discerning between
low-level broad SCNAs and high-level focal SCNAs—we applied
this method to datasets originating from different resources and
performed an integrative analysis. All of the ensuing results are
generated using default parameters. There are four data resources
from which the data were derived: TCGA, Progenetix [37], Clinical
Proteomic Tumor Analysis Consortium (CPTAC) [38] and Cancer
Cell Line Encyclopedia (CCLE) [39]. These datasets were generated
through various measurement platforms and sample types, with
detailed information provided in Table 1 and Supplementary Data
Section 3.

In glioblastoma samples, the SCNA patterns from different
datasets were relatively consistent (Figure 4). Low-level SCNA
frequency was calculated from segments with labels ‘+1’ and ‘-1’.
Chromosome 7 duplication and chromosome 10 deletion were the
most prominent low-level SCNA features in glioblastoma samples
with occurrence greater than 50% in all datasets and reaching
75% in the TCGA and CPTAC datasets. Chromosomes 9p, 13, 14
deletions and chromosomes 19, 20 duplications occurred in more
than 25% of samples in most datasets. The UMAP plots based
on the called low-level SCNA coverage of individual samples
(Supplementary Figure S7) reveal the association of SCNAs across
the genome. The co-occurrence of chromosome 7 duplication and
chromosome 10 deletion was frequent in the analyzed samples.
Duplications of chromosomes 19 and 20, and deletions of chromo-
some 9p were more likely to occur in samples with simultaneous
chromosome 7 duplication and chromosome 10 deletion (P-value
< 3e-12 for chr19, P-value < 9e-06 for chr20, P-value < 0.003 for
chr9p, Pearson’s Chi-squared test). The SCNA pattern observed
in the CCLE dataset was characterized by greater heterogeneity
and noise compared with other datasets. This could possibly be
explained by the difference between tumor samples and cell line
models [40].

High-level SCNA frequency was calculated from segments
with labels ‘+2’ and ‘-2’. Multiple consensus high-level SCNA
focal peaks were observed across various analyzed projects,
indicating the recurrent SCNAs’ robustness and reliability. Similar
to low-level SCNA pattern, the CCLE samples were also more
heterogeneous in high-level SCNAs. Supplementary Tables S1–
S2 provide further information regarding congruent high-level
duplication peaks from at least two projects and high-level
deletion peaks from at least three projects. The most frequent
amplification cross datasets happened in chr7: 54.1–56.1 MB with
a frequency of around 46% in TCGA and CPTAC, 21% in Progenetix
and 12% in CCLE. The most frequent high-level deletion
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Figure 4. Frequency of SCNA calls in different glioblastoma datasets. The orange and red colors represent duplications, and the light blue and dark
blue colors represent deletions. The Y-axis displays the percentage of samples with SCNA overlapping with 1MB-sized genomic bins. The X-axis denotes
chromosome numbers. Low-level SCNAs are identified by segments labeled ‘+1’ and ‘-1’, while high-level SCNAs are identified by segments labeled ‘+2’
and ‘-2’. In the frequency plots of high-level SCNAs, background noise peaks were filtered out.

(probably homozygous deletion) occurred in chr9: 21–23 MB with
a frequency around 62% in TCGA and CPTAC, 28% in Progenetix
and 70% in CCLE. The reduced high-level frequency detected
in the Progenetix samples could potentially be attributed to
the heterogeneity of the microarrays employed, which vary in
their detection sensitivity of small CNAs, in conjunction with the
diversity of sample types analyzed (Supplementary Figure S8).
Amplification peaks were identified at chr6: 31.8–32.8 MB and
chr7: 92.1–93.1 MB exclusively in the CCLE and Progenetix cohorts.
Since all analyzed CCLE samples are cell lines, we hypothesized
that amplification in these peaks is more likely to occur in
glioblastoma cell lines. To test this hypothesis, we examined
the composition of the Progenetix samples that exhibited such
amplification. We found that a considerable proportion of the

samples (37.6%) with the interesting amplification were cell lines,
which is significantly higher than the overall proportion of cell
lines in the Progenetix samples (6.3%). This observation was
confirmed by a Pearson’s Chi-squared test with a P-value less
than 2.2e-16, indicating a potential association between cell line
samples and amplification in those loci.

We also analyzed the LUSC datasets from these data resources
(Supplementary Figure S9). Low-level and high-level SCNA pat-
terns in LUSC samples were roughly accordant across projects.
Duplications of chromosomes 1q, 2p, 3q, 5p, 7, 8q and deletions
of chromosomes 3p, 5q, 8p were characteristic low-level SCNA
patterns in these samples with frequencies between 25 and 50%.
Apart from focal peaks, high-level SCNAs spanned chromosomes
3q and 5p with amplification.
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Relationship between copy-number dosage and
messenger RNA expression
SCNAs have been reported to exhibit a strong correlation with
messenger RNA (mRNA) expression. However, it is important to
note that these alterations do not lead to proportional changes
in gene expression levels, due to the presence of transcriptional
adaptive mechanisms [41, 42]. To better understand the extent to
which SCNAs influence the expression of specific genes and to
demonstrate the practical utility of labelSeg and the information
provided by CNA levels, we examined the correlation between
copy-number dosage and mRNA expression of protein-coding
genes with recurrent high-level CNAs. Specifically, we analyzed
paired mRNA expression data (normalized STAR read counts by
TMM [43]) and CNA profiles of glioblastoma samples from the
TCGA-GBM project. We only considered protein-coding genes that
were amplified or highly deleted with a frequency of >5% in
TCGA-GBM samples, and that were located in the consensus focal
regions mentioned in Section 4.3 and Supplementary Tables S1–
S2. Our results showed that 62 out of 68 frequently amplified
genes had significantly increased mRNA expression when the
SCNA level was ‘+2’ compared with those with copy-neutral
SCNAs labeled as ‘0’ (Kruskal–Wallis test). Similarly, 21 out of 24
frequently high-level deleted genes had significantly decreased
mRNA expression when the SCNA level was ‘-2’ compared with
those with SCNAs labeled as ‘0’. In this cohort, the most com-
monly observed high-level duplicated gene was the tumor onco-
gene EGFR, while the tumor suppressor gene CDKN2A was the
most frequently deleted. We found a robust association between
the levels of SCNAs and the corresponding mRNA expression for
both of these genes (Figure 5A). Supplementary Figures S10–S11
provide box plots illustrating the correlation between SCNA and
mRNA expression for other genes.

Figure 5B further shows the high correlation between SCNA
levels and mRNA expression of the frequently altered genes in
copy number dosage. These genes were clustered based on their
genomic location in SCNA levels, which is not surprising since
SCNA is a large-scale genomic variation affecting multiple genes.
Genes in cytobands chr7p11, Chr9p21, chr12q13 and chr12q14
were strongly regulated in mRNA expression by the relative copy
number states. Interestingly, VSTM2A and ARHGAP9 were not
influenced by SCNA levels, although mRNA expression of nearby
genes was strongly impacted by SCNA. Enrichment analysis was
performed separately for these frequently high-level duplicated
and deleted genes (Supplementary Figure S12). Both sets of genes
were enriched in the glioma signaling pathway, indicating the
important role of high-level SCNA in cancer development.

A similar analysis was conducted on the TCGA-LUSC cohort. Of
the 1383 frequently amplified genes, 938 had an associated mRNA
expression with their SCNA levels, while 20 of the 25 frequently
high-level deleted genes had an associated mRNA expression
with their SCNA levels. Notably, the high-level deleted genes with
mRNA expression responsible for copy number changes were
also located in cytoband chr9p21, which contains CDKN2A and
CDKN2B (Supplementary Figure S13). Several frequently ampli-
fied genes that did not show mRNA association were enriched
in epidermal keratinocyte differentiation (Supplementary Figure
S14).

CONCLUSION
Comprehensive profiling of SCNAs is valuable for advancing our
understanding of cancer development and improving precision

medicine applications. Here, we provide a novel method labelSeg
for fast and accurate annotation of CNA segments. Our method
estimates thresholds for calling different CNA levels from
individual segment profiles, allowing more complete and robust
identification of SCNAs in heterogeneous samples. The use
of separate clustering by segment length not only adapts to
the biological and technical variance in both focal and broad
segments but also increases the tolerance to sub-clone effects
and noise. Compared with the use of fixed cut-off values,
labelSeg achieves a similar calling speed but increased accuracy.
Furthermore, it does not require additional estimation such as
tumor sample purity or other prior knowledge, making it a more
convenient and powerful tool for large-scale comparative and
integrative analysis to overcome bias from individual studies or
platforms.

Our study demonstrated that labelSeg outperformed previous
methods in SCNA profiling, as evidenced by its higher accuracy
and F1 score. The robustness of labelSeg was demonstrated by
the consistent patterns of SCNAs detected across heterogeneous
datasets, making it a suitable tool for integrative analyses. Our
analysis further confirmed simultaneous chromosome 7 dupli-
cation and chromosome 10 deletion in glioblastoma samples,
which has been previously reported in other studies [31], thus
highlighting the detection accuracy of genome-wide low-level
CNAs. Furthermore, we identified several consensus high-level
SCNA focal peaks enriched in protein-coding genes, which were
observed in at least two of the four datasets. For most of these
genes, mRNA expression strongly correlated with the called SCNA
status, providing insights into the impact of SCNA of driver genes
on tumor evolution.

Because labelSeg solely requires the logR values of segments as
input, it is compatible with any technology that delivers segment
data from its processing pipeline, regardless of the original data
type (i.e. count or intensity-based). However, this general compat-
ibility to a wide range of e.g. microarray and NGS platforms arrives
with certain limitations of the method, particularly in estimating
absolute copy number and ploidy which require some information
about allelic composition. Although this is not a problem when
relative copy number states are targeted, it renders the method
unsuitable for some investigations that require absolute quan-
tification of copy numbers such as the accurate assessment of
aneuploidy in tumor cells. Also, while sensitivity to probe-level
noise affects all calling methods to various degrees, in labelSeg
such noise can diminish the clustering of segments in the logR
values, which can hinder the ability to set accurate calling levels.
Therefore, when applying labelSeg to segment data generated by
platforms with higher noise levels, such as methylation arrays and
single-cell RNA sequencing, its performance might be compro-
mised. However, when working with segment data of good quality,
these limitations become less concerning.

To conclude, our study presents a new strategy for segment
classification and annotation, which enhances the interpretation
of heterogeneous segment profiles with respect to calling
efficiency, accuracy and granularity. The stratification of SCNAs
based on distinct levels highlights their varying sizes, ampli-
tudes and potential functional roles in the context of cancer
pathogenesis. As the role of SCNA information expands within
cancer genomics applications, including tumor classification
and clinical diagnostics[44–46], our dedicated profiling method
not only empowers us to investigate the intricate relationship
between SCNAs, tumor evolution and oncogenomic subtypes
but also serves as a valuable tool for precise patient profiling.
By identifying specific SCNAs associated with prognosis and
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Figure 5. mRNA expression of genes with frequent high-level duplications and high-level deletions in glioblastoma. (A) mRNA expression of characteristic
genes across different SCNA levels. (B) Heatmap displaying SCNA levels and mRNA expression in TCGA glioblastoma samples. The rows correspond to
samples, and the columns correspond to genes. The left SCNA heatmap presents SCNA label values. The right mRNA heatmap maintains the same
row and column order as the left plot. P-values were computed using the Kruskal–Wallis rank sum test and BH-adjusted from TMM-normalized mRNA
counts. These normalized mRNA counts were log-transformed and standardized across samples per gene for visualization.

treatment response, our method has the capacity to assist
clinicians in tailoring therapeutic strategies, thereby advancing
the field of precision medicine and ultimately contributing both
to advancements in cancer research and clinical care.

Key Points

• Somatic copy number alterations (SCNAs) in cancer
genomes play a crucial role in tumor initiation and pro-
gression. Currently, the interpretation of segment data,
a common data format for representing SCNAs, is chal-
lenging due to signal variability and noise.

• To address this challenge, we present a novel method
called labelSeg. This tool employs the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN) clus-
tering algorithm and leverages the length–amplitude
relationship of SCNAs to identify distinct CNA types
from individual segment profiles, including low-level
broad CNAs and high-level focal CNAs.

• labelSeg showed superior performance over alternative
methods in both simulations and real datasets. And the
usefulness of labelSeg was illustrated in the integrative
analysis of different segment datasets and in the anal-
ysis of tumor key genes targeted by frequent high-level
SCNA occurrences.
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