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Genome variation is the direct cause of cancer and driver of its clonal evolution.
While the impact of many point mutations can be evaluated through their
modification of individual genomic elements, even a single copy number
aberration (CNA) may encompass hundreds of genes and therefore pose
challenges to untangle potentially complex functional effects. However,
consistent, recurring and disease-specific patterns in the genome-wide CNA
landscape imply that particular CNA may promote cancer-type-specific
characteristics. Discerning essential cancer-promoting alterations from the
inherent co-dependency in CNA would improve the understanding of
mechanisms of CNA and provide new insights into cancer biology and potential
therapeutic targets. Here we implement a model using segmental breakpoints to
discover non-random gene coverage by copy number deletion (CND). With a diverse
set of cancer types from multiple resources, this model identified common and
cancer-type-specific oncogenes and tumor suppressor genes as well as cancer-
promoting functional pathways. Confirmed by differential expression analysis of data
from corresponding cancer types, the results show that for most cancer types,
despite dissimilarity of their CND landscapes, similar canonical pathways are
affected. In 25 analyses of 17 cancer types, we have identified 19 to
169 significant genes by copy deletion, including RB1, PTEN and CDKN2A as the
most significantly deleted genes among all cancer types. We have also shown a
shared dependence on core pathways for cancer progression in different cancers as
well as cancer type separation by genome-wide significance scores. While this work
provides a reference for gene specific significance in many cancers, it chiefly
contributes a general framework to derive genome-wide significance and
molecular insights in CND profiles with a potential for the analysis of rare cancer
types as well as non-coding regions.
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1 Introduction

Cancer genomes are characterized by a wide range of mutations in comparison to the
unaltered germline genome. These “somatic”mutations emerge during an individual’s life time
and may accumulate sufficiently to lead to malignant transformation and tumorigenesis.
Oncogenic mutations can impact the regulation and level of gene expression as well as the
completeness and properties of gene products. While deviation from the physiological state
typically impair cell viability, two features inherent to malignant transformation, genome
instability and high replication rate, frequently promote the generation of a large pool of
somatic genome alterations. This pool potentiates the selection of the sporadic cases where the
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mutated genome promotes a growth advantage and protection from
apoptotic mechanisms. However, sincemost variations do not confer a
strong growth advantage (Vogelstein et al., 2013), the detection of the
few key cancer-promoting variations hidden in a complex mutational
landscape constitutes a major challenge in cancer genome research.

Depending on the structure of somatic variations, they can be
grouped into small-scale sequence alterations, including single
nucleotide variations (SNVs), small insertions and deletions
(INDELs), and structural variations, including copy number
aberrations (CNAs). While the former affects isolated genetic
elements, CNAs change the dosage of the covered genetic elements
in the affected segment and also may disrupt the local genomic
context, e.g., by affecting regulatory elements.

Point mutations have been reported and extensively studied for
their functional impact. Affected genes can be evaluated regarding
their relevance for oncogenesis through the general effect of their
mutations. Briefly, cancer related genes are subdivided into two
functional groups: oncogenes, of which gain-of-function (GOF)
mutations promote proliferation or inhibit regulatory mechanisms
and tumor suppressor genes (TSGs), of which loss of function (LOF)
mutations confer a negative impact on cell cycle control and other
cellular surveillance functions (Weinberg, 1994). The principal modes
of action of oncogenes and TSG exhibit differing mutational
characteristics. Namely, mutations for oncogenes tend to recur at
the same locus; while mutations for TSGs scatter along the coding
sequence (CDS) Accordingly, in Catalogue of Somatic Mutations in
Cancer (COSMIC) database (Forbes et al., 2010), mutations are
classified with a so-called “20/20 rule”: to classify a gene as an
oncogene, 20% of all the mutations within a gene’s CDS recorded
in database, need to reside at the same locus.; whereas to classify one as
a TSG, 20% of recorded mutations need to be inactivating mutations
but they mostly do not overlap in their location (Vogelstein et al.,
2013).

In analogy to the diverging functional attributions of point
mutations for oncogenes and TSGs, CNAs can be divided into
amplifications and deletions. While deletion of a fraction of gene
results in LOF due to truncated or untranscribed gene product, only
when the entire CDS and potentially the regulatory regions outside
CDS are amplified, a GOF arises.

On the mechanistic level, CN gains and losses emerge from
erroneous recombination during DNA replication (Hastings et al.,
2009) but present unique processes. Extrachromosomal oncogenes
have been detected as copy number gain events (Turner et al., 2017;
Decarvalho et al., 2018), while chromothripsis - chromosome
shattering and rejoining of clustered segments - has been described
as a phenomenon in cancer, which disrupts the genetic elements in the
region and can result in CN deletions (Stephens et al., 2011). On the
tumor evolution perspective, CN loss events tend to precede CN gain
events, suggesting their different roles in oncogenesis (Watkins et al.,
2020). Taken together, the mechanism and impact for amplification
and deletion are dissimilar. In this study, we particularly focus on the
copy number deletion (CND) patterns modeling the gene inactivation
incorporating its unique feature of introducing segmental breakpoints
within a gene’s CDS.

Whereas point mutations target one particular genetic element at
the specific location, a single CND potentially affects hundreds of
genetic elements with a subsequent co-segregation of the affected
genes. In addition, overall CNA involvement is highly correlated with
the disease stage (Hieronymus et al., 2014; Shain et al., 2015;

Tamborero et al., 2018; Gerstung et al., 2020), indicating an
accumulation of unrepaired replication defects instead of a
predominant selection of driver events. These factors present
additional layers of complexity to distinguish the significant genes
within large segmental CNA. Yet, CNAs manifest as genome-wide
landscapes with frequently recurring features within related cancer
types (Cordo and Baudis, 2021) (Supplementary Appendix Figure S2).
This observation implies that particular CNA patterns may be
specifically tolerated and/or contain elements which provide
selective advantage during malignant transformation and disease
progression.

Earlier research has described amplification and deletion hotspots
among multiple cancer types (Baudis, 2007; Beroukhim et al., 2010;
Kumar et al., 2012; Aouiche et al., 2020). CNA-derived gene discovery
can complement the knowledge of functional landscape during
oncogenesis and pinpoint new genes previously unknown from
point mutation analysis (Mullighan et al., 2007). In particular, an
integrative multi-cancer analysis for CNA-exerted susceptibility
discovery can increase the statistical power to extract disease-
relevant genes and delineate their functional impact across cancer
types. In recent years, work from several data curation projects and
international research consortia has led to an improved availability for
generally compatible, genome-wide CNA profiling data with
associated information and thereby enabled the development and
benchmarking of integrative approaches. Particularly, the Progenetix
CNA database has gathered 115,357 samples across 788 cancer types
from published studies and cohorts, including the CNA data from
11,090 patients of 182 cancer types from the Cancer Genome Atlas
(TCGA) Project (Weinstein et al., 2013; National Cancer Institute,
2013; Huang et al., 2021).

In the last decade, GISTIC has been widely used to assess the
significance of individual genomic regions in CNA data sets from
individual genomic platforms (Beroukhim et al., 2010; Mermel et al.,
2011). It uses a semi-parametric permutation to calculate a score for
each probe based on both amplitude and frequency and identifies
regions significant for amplification and deletion. However, beyond
the probe-level and region-level significance discovery, it does not
offer a statistical test for gene-wise significance which would allow
cross-study comparisons.

Here we describe an approach to evaluate gene-wise significance in
CNDwhich utilizes the non-random features in gene locus disruption.
We verify our model by comparing the identified genes with known
cancer driver gene sets as well as genes with reduced expression in the
respective cancer types. Additionally, we corroborate the identified
genes in terms of their biological impact with pathway analysis and
cancer type clustering.

2 Results

We used data from three independent data sources depending on
sample availability: 13 cancer types from the arrayMap collection,
which represents a subset of the Progenetix database with available
probe-specific genomic array data (Cai et al., 2015); 12 cancer types
from the TCGA project processed on genome-wide SNP6 arrays
(Weinstein et al., 2013); as well as four cancer types from
cBioPortal database derived from whole exome sequencing (WES)
experiments (Cerami et al., 2012) (Table 1). Among these, nine cancer
types were represented by more than one source allowing comparison
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and benchmarking for source or technology related biases (Table 1).
Their genome-wide CNA landscape differed among cancer types while
remained comparable between data sources (Supplementary
Appendix Figure S3).

2.1 Model design

We observed non-random features in CND which can be
harnessed to characterize their underlying mechanisms. First, we

TABLE 1 Analyzed cancer types across data sources.

arrayMap TCGA cBioPortal

Bladder Urothelial Carcinoma (C39851) y y

Clear Cell Renal Cell Carcinoma (C4033) y y

Colon Adenocarcinoma (C4349) y y y

Diffuse Large B Cell Lymphoma NOS (C80280) y

Ductal Breast Carcinoma (C4017) y y

Endometrial Endometrioid Adenocarcinoma (C6287) y

Esophageal Adenocarcinoma (C4025) y

Gastric Adendocarcinoma (C4004) y

Glioblastoma (C3058) y y y

Hepatocellular Carcinoma (C3099) y

Lung Adenocarcinoma (C3512) y y

Lung Squamous Cell Carcinoma (C3493) y y

Medulloblastoma (C3222) y

Ovary Serous Cystadenocarcinoma (C7978) y y

Pancreatic Adenocarcinoma (C8294) y

Plasmacytoma (C9349) y

Prostate Adenocarcinoma (C2919) y y

Thyroid Gland Papillary Carcinoma (C4035) y

FIGURE 1
Gene hit frequency decreases as CND segment size increases Each dot shows an individual gene deletion event in a segment falling into the bin size
range and the boxplot shows the summary statistics of the bin including its 25, 50 (red line; median), 75 percentiles. Left: The segment size is shown from 0 to
5MB; the gene hit frequency is limited up to 100 at a linear scale to show the decay with the bins. Right: for segment size between 0 and 500 kb with log scale
on y-axis.
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noted that CND segment size tend to be reduced in gene-rich regions.
We overlaid the CND segments from all the datasets included in the
analysis one and computed the number of genes hit by the collective
segment profile normalized by segment length in units of 100kb,
multiplied by the number of samples containing the segment. For
simplicity, we refer to this value as gene hit frequency (GHF) from
here. GHF decayed with increasing CND size (Figure 1). In the
segment sizes below 5 Mbp GHF decreased from 49.20 (bin 0,
0–100 kb) to 3.55 (bin 49, 4.9 Mbp - 5 Mbp) (Figure 1 Left). We
noted that the individual GHF values in the first two bins’ (0–200 kb)
upper quantile were above the axis limit and the individual GHF
values spanned five orders of magnitude. Subsequently, we plotted the
GHF for the first five bins in log scale (Figure 1 Right). Visibile on both
scales, the individual points formed curves of discrete gene hit number
(1, 2, 3 . . . ) divided by segment size (x-axis), while the zero-hit curve
was not visible on the log-scale. We observed GHF with higher
variability and higher median in the lower range of segment size
and more consistently lower GHF as segment size increased, with a
Spearman correlation coefficient at -0.11 and p-val 2.23 × 10–308

(python’s minimal float value). Overall, the GHF decay indicated
that CND favored targeting specific genes and long un-targeted CND
in gene-rich regions were selected against.

Further, we showed that CND tended to recur and to locate within
the genomic range of cancer-related genes. We tested the recurrence
with CND segment endpoints in expert curated driver genes from
COSMIC (Sondka et al., 2018) against the rest of the genome. The
localization of breakpoints in driver gene sets is highly over-
represented in all 29 analyses, with one-sided Fisher exact p-value
in the range of 0.038 to <2.23 × 10−308. After correcting for gene length,
breakpoints were still over-represented in the driver set in 27 analyses,
with one-sided Fisher exact p-value in the range of 4.38 × 10–8

to <2.23 × 10−308. For Diffuse Large B Cell Lymphoma, NOS
(C80280; dataset from arrayMap) the p-value equaled 0.51 and for
medulloblastoma (C3222; arrayMap) it equaled 1.

Based on these initial observations, we then designed a model to
capture these non-random CND features as illustrated in Figure 2. In
each cancer type, we aggregated all CND segments and created new
“collective segments” in a reference genome track. We calculated a
gene score for all the genes giving weight to the sample size on the
segments covering the gene while penalizing the length of segments to
account for size-related unspecific deletion.

Scoreg � ∑N
i�1

Si
Li + Lg

( ) (1)

For each gene g, a score is defined by summing up all overlapping
deletion segments (N). For each segment i, the division of sample
count Si and the sum of segment length Li and gene length Lg.

The positions of collective CND segments were shuffled within the
same chromosome. The gene scores were calculated for each shuffling,
to generate a background score distribution for each gene. The gene
score on the real data was compared with the background distribution
to calculate a empirical p-value to denote the gene’s significance, which
was subsequently adjusted with Benjamini-Yekutieli procedure.
Significant genes from each analysis had the adjusted p-value
below 0.05.

2.2 Significance across multiple cancer types

For the 29 datasets included in this study, we first assessed the
breakpoint density in the gene-dense and gene-poor regions within
each analysis. While genome-wide SNP array derived datasets from
TCGA and arrayMap sources showed similar density, the WES-
derived data from cBioPortal were biased against gene-poor
regions, which causes inflation of gene significance level, making it
not comparable with the array-derived data where probes are
approximately equally distributed across the whole genome
(Supplementary Appendix Figure S4). Therefore, the WES data-

FIGURE 2
An illustration of gene score calculation The gene score was defined to reward the high number of sample recurrence and penalize the length of
segments and genes. In this example, there are four cancer samples, all of which have a whole or partial deletion on the indicated gene g. These CN segments
are collapsed to a collective track, leaving four collective segments of which only three of them overlap with the gene. The gene score sums over these three
segments (i) with count of involved sample Si divided by the sum of segment length Li and the common gene length Lg.
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based results were not used to derive a gene set by a significance cutoff
but only for cancer type clustering with genome-wide significance
p-values in Section 2.5.

In the 17 cancer types, the number of genes tested as significant
with the segmental breakpoint model in each analysis ranged from
19 to 169 (Supplementary Appendix Table S1). We used the three
cancer-driving gene sets as the “gold standard” to test enrichment of
identified genes in these sets (Bailey et al., 2018; Sondka et al., 2018;
Dietlein et al., 2020). 144 genes are included by all gene sets and
134 genes in at least two sets, while 784 genes are exclusively found in
one set (Venn diagram in Supplementary Appendix Figure S5; Gene
set details in Appendix 3). In 20 out of 25 analyses, the identifed genes
were enriched in the Bailey set (16/25 for Dietlein set and 18/25 for
CGC set respectively; Supplementary Appendix Table S2). Specifically,
RB1 was found significant in 15 out of 25 analyses, followed by PTEN,
CDKN2A, PTPRD, SMAD2, NRG1, JAK2, FHIT, DLC1, SMAD4,
MAP2K4, RET, LRP1B, BRCA2, EPHA7, MLLT3, KANSL1,

CTNNB1, APC, FGFR1, NCOR1, FLCN. Their functions spanned
PI3K/Akt pathway, cell cycle regulation, Wnt signaling and chromatin
histone modification pathways. The cross-study significant genes
showed local clusters of significance, particularly in chromosome
8p, 9p and 17p (Figure 3), while a few others e.g. RB1, FHIT and
PDE4D, appeared as singletons.

2.3 Differential expression against normal
tissue

Since cancer CNA has been previously found to be strongly
correlated with gene expression, for a majority of genes, we expect
that genes significantly covered by CND should have a reduced
expression level compared to the matched normal samples (Shao
et al., 2019). We tested this hypothesis with the RNA sequencing data
of paired cancer and normal samples from TCGA. For nine cancer

FIGURE 3
Significant genes shared among analyses. 49 genes found significant in more than five analyses are marked red and labeled accordingly.
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types with available data, we determined a validation list of genes with
significant mRNA expression reduction in tumor samples as
compared to normal samples. We expect that the reduced dosage
at DNA level may result in a cascade effect on downstream effectors
with potentially magnified impact, and that other somatic variations
unrelated to copy number alterations may additionally influence a
wide range of expression values. In turn, the significant genes should
demonstrate an evident reduction in expression but may not be among
the most downregulated by log fold change. Here, analyses for all the
cancer types showed significant over-representation of identified CND-
significant genes in the downregulated genes from RNAseq data (one-
sided Fisher exact p values range from 1.6 × 10−6 to 5 × 10−21),
corroborating the LOF at the expression level.

2.4 Pathway enrichment analysis

We also evaluated the dependency of the analyzed cancer
types on different functional pathways. The clustering of
pathways by significant genes showed a universal enrichment
in the pathways related to cancer (Figure 4; zoomed area of
48 pathways). Among these were “TGF-beta signaling”, “stem

cell”, “viral infection”, receptor signaling pathways related to
growth and apoptosis, “senescence”, “energy metabolism” and
“cell adhesion”. With paired cancer types derived from different
data sources, two cancer types out of nine - ovary serous
cystadenocarcinoma (C7978) and glioblastoma (C3058) - were
clustered together. Furthermore, a list of 29 canonical pathways
from Supplementary Table S5 of (Vogelstein et al., 2013) were
used as hallmarks in cancer development. For these pathways,
clustering was performed without standardization to compare the
influence among cancer types as well as between multiple
resources (Supplementary Appendix Figure S1). It was
conspicuous that none of the analyses was enriched in
mismatch repair pathway (MMR). MMR is common for
familial cancers, including hereditary non-polyposis colorectal
cancer (HNPCC) or Lynch syndrome (Hsieh and Yamane, 2008).
Microsatellite instability (MSI) caused by MMR defects is
mutually exclusive with the chromosomal instability related to
CNA (Søreide, 2007), which is in accordance with our result.
Three pathways, “TGF-beta signaling”, “Cell cycle” and
“p53 signaling”, were enriched in a majority of cancer types.
Additionally, Ras signaling pathway was enriched in prostate
adenocarcinoma from arrayMap dataset and GnRH signaling

FIGURE 4
Clustering of genome-wide significance value of paired eight cancer types with all 326 KEGG pathways. The same color coding of analyses on the top of
the heat map indicate the same cancer type.

Frontiers in Genetics frontiersin.org06

Huang and Baudis 10.3389/fgene.2022.1017657

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1017657


pathway was enriched in ovary serous carcinoma from TCGA
dataset.

We listed the top 10 pathways by enrichment significance in the
25 analyses (Supplementary Table S3). “Pathways in cancer” appears
in 11 analyses. Different types of viral infection appear in 12 analyses
while different types of drug metabolism appear in nine analyses.
“Metabolism of xenobiotics by cytochrome P450”, “Cell cycle” and
“Cellular senescence” appear in seven analyses. “Chemical
carcinogenesis” appears in six analyses.

2.5 Cancer type clustering

So far, we used FDR cutoff to identify significant genes within an
analysis. However, among the genes not passing the threshold, their
p-values entailed information and constituted a pattern which could
distinguish between cancer types. To test this hypothesis, we used the
genome-wide significance scores to assess similarities between cancer
types. We used uniform manifold approximation and projection
(UMAP) to reduce the gene significance p-values to two
dimensions and indicated identical cancer types from different data
sources with the same color (Figure 5). All matched cancer types were
represented in a neighborhood, except for prostate adenocarcinoma
(C2919). The ability to differentiate between cancer types
substantiated that each gene’s p-value from the method contained
additional information about the analyzed cancer type.

3 Discussion

We have proposed a data-driven method based on the frequency
of gene disruption by segmental breakpoints to discern non-random
CND at a gene level and generated a list of genes significantly affected
by CND as well as genome-wide significance scores. From
29 independent runs on 18 cancer types, we have benchmarked the
cancer-driving effects of the resulting genes through enrichment
analysis for three independent “driver” gene sets and found
significant enrichment all three sets. In addition, the genes show
significant enrichment for cancer-related pathways and reduction
in mRNA expression. Using the genome-wide significance scores
we have clustered the analyses from multiple independent data
resources and showed moderate separation between cancer types.

Apart from providing gene-wise significancemeasure, this method
has several advantages, including the preservation of gene
neighborhood information, robustness with respect to global CNA
content and variation from individual samples. First, the shuffling
preserves the genomic context and gene neighborhood structure.
Consider two genes A and B in close proximity. If they are within
the same CND segment (co-segregation, equal disease relevance), the
randomization would give them same background sample count. The
gene length difference is also reflected in the background rate and they
have the same effect on the significance score. In contrast, if gene A is
more disease-relevant, there would be more CND segments
overlapping with gene A, resulting in smaller collective segments

FIGURE 5
UMAP projection of genome-wide significance scores among nine paired cancer types from multiple data sources. In order of appearance the NCIt
codes in the figure legend represent - C2919: Prostate Adenocarcinoma; C3058: Glioblastoma; C3493: Lung Squamous Cell Carcinoma; C3512: Lung
Adenocarcinoma; C39851: Bladder Urothelial Carcinoma; C4017: Ductal Breast Carcinoma; C4033: Clear Cell Renal Cell Carcinoma; C4349: Colon
Adenocarcinoma; C7978: Ovarian Serous Cystadenocarcinoma.
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for gene A score calculation. With the similar background rate due to
location proximity, gene A will hence a higher score compared to gene
B. In addition, the method accounts for the variation in overall CNA
content. Specifically, if a set of samples mostly consists of profiles with
an overall low amount of CNA, the probability of CNA at each given
region remains and will not affect the outcome of the analysis. Finally,
it is robust for the variation introduced from individual samples.
Individual samples’ segmentation results can differ based on baseline
setting - shift between adjacent CN states (Gao and Baudis, 2020), but
such shifting-derived error does not substantially affect the final
outcome of the method, as a single sample count has little
influence on the modelled aggregation of the sample collection.

On the other hand, this method requires a dataset selection that
compromises between sample size and cancer type specificity (for a
representative and comparable CND profile), as a mixture of cancer
subtypes with highly variable CNA landscape introduces breakpoint
bias, and conversely a small sample size and few breakpoints result in
low statistical power. Also, it is expected that in cases of
chromothripsis-like events (CTLP; focal, extreme hyper-
segmentation) (Cai et al., 2014; Cortés-Ciriano et al., 2020) the
significance score of local genes can be increased and the
significance of other genes on the same chromosome can be
reduced due to the rise in the overall CNA rate. Such samples
should be pre-filtered with the criteria summarized in (Luijten
et al., 2018) and investigated carefully on a case-by-case level.

Genes with significant scores across multiple analyses include
established tumor suppressor genes that control cell cycle and regulate
proliferation and programmed cell death (Marshall, 1991). RB1 is
implicated in multiple processes, including cell cycle, stress responses
and apoptosis (Chau and Wang, 2003). FOXO and PTEN are key
regulators in phosphatidylinositol 3–kinase (PI3K) pathway which
reacts to growth signals (Salmena et al., 2008; Chalhoub and Baker,
2009). CDKN2A (p16), CDKN2B(p15) at 9p21 controls S-phase
checkpoint and their deletions have been reported in multiple
cancers (Foulkes et al., 1997; Tsihlias et al., 1999), SMAD2/4 are
involved in TGF-beta signaling pathway (Hahn et al., 1996; Nakao
et al., 1997). The list also includes genes with sporadic or ambiguous
oncogenic attribution. FGFR1 has been reported to have both
oncogenic and tumor suppressive potential (Katoh and Nakagama,
2014) and the tyrosine kinase RET has long been established as a
classic proto-oncogene but was found to act as a TSG in colorectal
carcinomas (Eng, 1999; Luo et al., 2013).

As many high-level regulators have alternative cancer-promoting
roles depending on the cellular context, the evidence of their selective
deletion in a multi-cancer analysis provides additional support for
their relevance in oncogenic processes. Our results also point out genes
with emerging cancer-related roles outside of classical cancer
pathways such as GSTM1/GSTT1 in xenobiotic metabolism
(Ginsberg et al., 2009), ELF2 as an ETS transcription factor
regulating various biological pathways (Seth and Watson, 2005) or
DLC1 as a Rho-GTPase activating protein regulating RhoA pathway in
hepatocellular carcinoma (Xue et al., 2008). In addition, we have
identified large genes residing in common fragile sites to be
significantly affected by deletions and contributing to cancer
development, including CSMD1, WWOX and FHIT (Smith et al.,
2006).

Through the pathway analysis, we have observed prevalent
enrichment in cancer-related pathways as well as hallmark
mechanisms for cancer progression. In summary, the TGF-beta

signaling pathway, cell cycle regulation and p53 signaling pathways
emerged as the most frequently affected among all cancer types.
Prostate, ovary and ductal breast adenocarcinoma samples were
enriched for a majority of hallmark pathways, confirming their
prominent dependence on CNA compared to discrete mutational
events, as previously established (Ciriello et al., 2013).

The genomic CNA patterns as in Supplementary Appendix
Figure S3 have been trained to distinguish cancer types through
binned genome-wide CNA status (Baudis, 2007), but the predictive
signatures to the level of chromosomal regions are not readily
interpretable for biological functions. On the contrary, gene-level
scores for cancer type clustering in our analysis shows clear but
limited separation. This demonstrates that the cancer-type-specific
CN signature is captured in the genome-wide scores. The limited
distinction may be related to the vast amount of non-coding areas
not included (ENCODE Project Consortium, 2012). Indeed, as an
example in the local context of CDKN2A/B, a long non-coding
RNA ANRIL is responsible for the transcriptional regulation,
miRNA interaction, which modulates proliferation, senescence,
motility and inflammation (Kong et al., 2018). Additionally,
heterogeneity within the sample set, non-CNA driven cancer
samples as well as shared significance of core CNA genes may
have overshadowed the less impactful cancer-type-specific genes
for the cluster separation.

In this article, we have developed a method to extract non-random
significance from copy number deletion in cancer which exploits the
specific functional implications of genomic deletion or disruption
events. While due to the differences in genomic architecture and
functional mechanisms of copy number gains this method is not suited
to deliver a “universal CNA model” in principle the method could be
adapted to discern non-random copy gain significance. Namely,
cancer-promoting genes could be expected to show under-
represented disruption by either gain or loss copy endpoints as
well as over-representation of endpoints in close proximity to gene
start and end which however should have overall results distinct from
the observed CND statistics.

In summary, we provide a general framework for integrative
analysis on copy number deletion. It has confirmed well-known
tumor suppressor genes as well as identified genes with incomplete
characterization of their mode of action, suggesting the value in
novel discovery and promoting further research into less studied
genes. With the growing collection in high-quality CNA data, this
method can be expanded to rare cancers which will potentiate
discovery of novel cancer susceptibilities and dependencies and
complement the overall understanding of malignancy
development. Confirmed by the functional characterization of
the known coding genes, this tool might be extended to the
non-coding area and provide a better overview of the CNA
functional landscape.

4 Experimental procedures

4.1 Data availability

CNA data has been accessed from three different sources -
arrayMap, TCGA, cBioPortal - which had been integrated into the
Progenetix database (Table 1) (Cerami et al., 2012; Weinstein et al.,
2013; Cai et al., 2015; Huang et al., 2021). CN data and curated
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biosample metadata are freely accessible through progenetix.org over
the GA4GH Beacon protocol in JSON format compatible to the
Beacon v2 data model as well as tab-delimited text file format
(Wagner et al., 2021; Jacobsen et al., 2022; Rambla et al., 2022).

For differential expression analysis, transcriptomics data in raw
HT-Seq counts was accessed for respective TCGA projects from
GDC Data Portal. Paired RNAseq data was available for 11 cancer
types: prostate adenocarcinoma (C2919), hepatocellular carcinoma
(C3099), lung adenocarcinoma (C3512), ductal breast carcinoma
(C4017), thyroid gland papillary carcinoma (C4035), endometrial
endometrioid adenocarcinoma (C6287), lung squamous cell
carcinoma (C3493), bladder urothelial carcinoma (C39851),
clear cell renal cell carcinoma (C4033), colon adenocarcinoma
(C4349), ovary serous cystadenocarcinoma (C7978).

4.2 Differential expression analysis

We used R-package EdgeR for differential expression analysis
between tumor and normal groups (Robinson et al., 2010). For each
cancer type, gene-wise counts from paired tumor—normal samples
were used. A TMM normalization was performed to calibrate for
the library size (total counts) per sample. Negative binomial model
was used to estimate the common and gene-wise dispersion
parameters. A gene-wise general linear model was fit by the
paired design and the differentially expressed genes were
determined by likelihood ratio test.

4.3 Pathway analysis

All 326 KEGG pathways (Kanehisa et al., 2021) were used to
determine the enrichment in each pathway with a one-sided Fisher
exact test with the contingency table of significant genes - genes with a
significance score on one axis and genes in/not in pathway on the
other axis. For clustering analysis including all pathways, log10 of
Fisher exact p values were calculated and standardized to 0–1 scale, i.e.
0 with lowest p. Hierarchical clustering with Euclidean distance and
average linkage method was performed on both cancer types and
pathways. For the clustering analysis of the 29 canonical cancer
pathways, the original Fisher exact p-value was used. Hierarchical
clustering with Euclidean distance and average linkage method was
performed on pathways only.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

QH conceived the project, performed analysis and wrote the
manuscript. MB provided the CNA data assembly, gave insights about
data analysis and clinical cancer biology and edited the manuscript.

Acknowledgments

We would like to thank the scientific input from members of the
Zurich Seminars in Bioinformatics as well as the Theoretical Cytogenetics
andOncogenomics group at University of Zurich for continuous work on
data collection and curation for the Progenetix database.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.1017657/
full#supplementary-material

References

Aouiche, C., Chen, B., and Shang, X. (2020). Predicting stage-specific recurrent
aberrations from somatic copy number dataset. Front. Genet. 11, 160. doi:10.3389/
fgene.2020.00160

Bailey, M. H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Bertrand, D., Weerasinghe, A.,
et al. (2018). Comprehensive characterization of cancer driver genes and mutations. Cell
173 (2), 1034–1035. doi:10.1016/j.cell.2018.07.034

Baudis, M. (2007). Genomic imbalances in 5918 malignant epithelial tumors: An
explorative meta-analysis of chromosomal cgh data. BMC cancer 7 (1), 226–315.
doi:10.1186/1471-2407-7-226

Beroukhim, R., Mermel, C. H., Porter, D., Wei, G., Raychaudhuri, S., Donovan, J., et al.
(2010). The landscape of somatic copy-number alteration across human cancers. Nature
463 (7283), 899–905. doi:10.1038/nature08822

Cai, H., Gupta, S., Rath, P., Ai, N., and Baudis, M. (2015). arrayMap 2014: an updated
cancer genome resource.Nucleic acids Res. 43 (D1), D825–D830. doi:10.1093/nar/gku1123

Cai, H., Kumar, N., Bagheri, H. C., von Mering, C., Robinson, M. D., and Baudis, M.
(2014). Chromothripsis-like patterns are recurring but heterogeneously distributed
features in a survey of 22, 347 cancer genome screens. BMC genomics 15 (1), 82–13.
doi:10.1186/1471-2164-15-82

Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012).
The cbio cancer genomics portal: An open platform for exploring multidimensional cancer
genomics data. Cancer Discov. 2 (5), 401–404. doi:10.1158/2159-8290.CD-12-0095

Chalhoub, N., and Baker, S. J. (2009). Pten and the pi3-kinase pathway in cancer. Annu.
Rev. Pathology Mech. Dis. 4, 127–150. doi:10.1146/annurev.pathol.4.110807.092311

Chau, B. N., andWang, J. Y. (2003). Coordinated regulation of life and death by rb. Nat.
Rev. Cancer 3 (2), 130–138. doi:10.1038/nrc993

Ciriello, G., Miller, M. L., Aksoy, B. A., Senbabaoglu, Y., Schultz, N., and Sander, C.
(2013). Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45
(10), 1127–1133. doi:10.1038/ng.2762

Frontiers in Genetics frontiersin.org09

Huang and Baudis 10.3389/fgene.2022.1017657

http://progenetix.org
https://www.frontiersin.org/articles/10.3389/fgene.2022.1017657/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1017657/full#supplementary-material
https://doi.org/10.3389/fgene.2020.00160
https://doi.org/10.3389/fgene.2020.00160
https://doi.org/10.1016/j.cell.2018.07.034
https://doi.org/10.1186/1471-2407-7-226
https://doi.org/10.1038/nature08822
https://doi.org/10.1093/nar/gku1123
https://doi.org/10.1186/1471-2164-15-82
https://doi.org/10.1158/2159-8290.CD-12-0095
https://doi.org/10.1146/annurev.pathol.4.110807.092311
https://doi.org/10.1038/nrc993
https://doi.org/10.1038/ng.2762
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1017657


Cordo, P. C., and Baudis, M. (2021). Copy number variant heterogeneity among cancer
types reflects inconsistent concordance with diagnostic classifications. bioRxiv.

Cortés-Ciriano, I., Lee, J. J.-K., Xi, R., Jain, D., Jung, Y. L., Yang, L., et al. (2020).
Comprehensive analysis of chromothripsis in 2, 658 human cancers using whole-genome
sequencing. Nat. Genet. 52 (3), 331–341. doi:10.1038/s41588-019-0576-7

Decarvalho, A. C., Kim, H., Poisson, L. M., Winn, M. E., Mueller, C., Cherba, D., et al.
(2018). Discordant inheritance of chromosomal and extrachromosomal dna elements
contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50 (5), 708–717.
doi:10.1038/s41588-018-0105-0

Dietlein, F., Weghorn, D., Taylor-Weiner, A., Richters, A., Reardon, B., Liu, D., et al.
(2020). Identification of cancer driver genes based on nucleotide context. Nat. Genet. 52
(2), 208–218. doi:10.1038/s41588-019-0572-y

ENCODE Project Consortium (2012). An integrated encyclopedia of DNA elements in
the human genome. Nature 489 (7414), 57–74. doi:10.1038/nature11247

Eng, C. (1999). Ret proto-oncogene in the development of human cancer. J. Clin. Oncol.
17 (1), 380–393. doi:10.1200/JCO.1999.17.1.380

Forbes, S. A., Bindal, N., Bamford, S., Cole, C., Kok, C. Y., Beare, D., et al. (2010).
Cosmic: Mining complete cancer genomes in the catalogue of somatic mutations in cancer.
Nucleic acids Res. 39 (1), D945–D950. doi:10.1093/nar/gkq929

Foulkes, W. D., Flanders, T. Y., Pollock, P. M., and Hayward, N. K. (1997). The cdkn2a
(p16) gene and human cancer. Mol. Med. 3 (1), 5–20. doi:10.1007/bf03401664

Gao, B., and Baudis, M. (2020). Minimum error calibration and normalization for
genomic copy number analysis. Genomics 112 (5), 3331–3341. doi:10.1016/j.ygeno.2020.
05.008

Gerstung, M., Jolly, C., Leshchiner, I., Dentro, S. C., Gonzalez, S., Rosebrock, D., et al.
(2020). The evolutionary history of 2, 658 cancers. Nature 578 (7793), 122–128. doi:10.
1038/s41586-019-1907-7

Ginsberg, G., Smolenski, S., Neafsey, P., Hattis, D., Walker, K., Guyton, K. Z., et al.
(2009). The influence of genetic polymorphisms on population variability in six
xenobiotic-metabolizing enzymes. J. Toxicol. Environ. Health, Part B 12 (5-6),
307–333. doi:10.1080/10937400903158318

Hahn, S. A., Schutte, M., Hoque, A. S., Moskaluk, C. A., Da Costa, L. T., Rozenblum, E.,
et al. (1996). Dpc4, a candidate tumor suppressor gene at human chromosome 18q21. 1.
Science 271 (5247), 350–353. doi:10.1126/science.271.5247.350

Hastings, P. J., Lupski, J. R., Rosenberg, S. M., and Ira, G. (2009). Mechanisms of change
in gene copy number. Nat. Rev. Genet. 10 (8), 551–564. doi:10.1038/nrg2593

Hieronymus, H., Schultz, N., Gopalan, A., Carver, B. S., Chang, M. T., Xiao, Y., et al.
(2014). Copy number alteration burden predicts prostate cancer relapse. Proc. Natl. Acad.
Sci. 111 (30), 11139–11144. doi:10.1073/pnas.1411446111

Hsieh, P., and Yamane, K. (2008). Dna mismatch repair: Molecular mechanism, cancer,
and ageing. Mech. ageing Dev. 129 (7-8), 391–407. doi:10.1016/j.mad.2008.02.012

Huang, Q., Carrio-Cordo, P., Gao, B., Paloots, R., and Baudis, M. (2021). The progenetix
oncogenomic resource in 2021, database: The journal of biological databases and curation.
Database (Oxford) 2021, baab043. doi:10.1093/database/baab043

Jacobsen, J. O., Baudis, M., Baynam, G. S., Beckmann, J. S., Beltran, S., Buske, O. J., et al.
(2022). The ga4gh phenopacket schema defines a computable representation of clinical
data. Nat. Biotechnol. 40 (6), 817–820. doi:10.1038/s41587-022-01357-4

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. (2021).
Kegg: Integrating viruses and cellular organisms. Nucleic acids Res. 49 (D1), D545–D551.
doi:10.1093/nar/gkaa970

Katoh, M., and Nakagama, H. (2014). Fgf receptors: Cancer biology and therapeutics.
Med. Res. Rev. 34 (2), 280–300. doi:10.1002/med.21288

Kong, Y., Hsieh, C.-H., and Alonso, L. C. (2018). Anril: A lncrna at the cdkn2a/b locus with
roles in cancer and metabolic disease. Front. Endocrinol. 9, 405. doi:10.3389/fendo.2018.00405

Kumar, N., Cai, H., VonMering, C., and Baudis, M. (2012). Specific genomic regions are
differentially affected by copy number alterations across distinct cancer types, in
aggregated cytogenetic data. PLoS One 7, e43689. doi:10.1371/journal.pone.0043689

Luijten, M. N. H., Lee, J. X. T., and Crasta, K. C. (2018). Mutational game changer:
Chromothripsis and its emerging relevance to cancer. Mutat. Research/Reviews Mutat.
Res. 777, 29–51. doi:10.1016/j.mrrev.2018.06.004

Luo, Y., Tsuchiya, K. D., Il Park, D., Fausel, R., Kanngurn, S., Welcsh, P., et al. (2013). Ret
is a potential tumor suppressor gene in colorectal cancer. Oncogene 32 (16), 2037–2047.
doi:10.1038/onc.2012.225

Marshall, C. J. (1991). Tumor suppressor genes. Cell 64 (2), 313–326. doi:10.1016/0092-
8674(91)90641-b

Mermel, C. H., Schumacher, S. E., Hill, B., Meyerson, M. L., Beroukhim, R., and Getz, G.
(2011). Gistic2. 0 facilitates sensitive and confident localization of the targets of focal

somatic copy-number alteration in human cancers. Genome Biol. 12 (4), R41–R14. doi:10.
1186/gb-2011-12-4-r41

Mullighan, C. G., Goorha, S., Radtke, I., Miller, C. B., Coustan-Smith, E., Dalton, J. D.,
et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic
leukaemia. Nature 446 (7137), 758–764. doi:10.1038/nature05690

Nakao, A., Imamura, T., Souchelnytskyi, S., Kawabata, M., Ishisaki, A., Oeda, E., et al.
(1997). Tgf-β receptor-mediated signalling through smad2, smad3 and smad4. EMBO J. 16
(17), 5353–5362. doi:10.1093/emboj/16.17.5353

National Cancer Institute (2013). The cancer genome atlas program. Available at:
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
(Accessed 20 May, 2021).

Rambla, J., Baudis, M., Ariosa, R., Beck, T., Fromont, L., Navarro, A., et al. (2022).
Beacon v2 and beacon networks: A “lingua franca” for federated data discovery in
biomedical genomics, and beyond. Hum. Mutat. 43 (6), 791–799. doi:10.1002/humu.
24369

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edger: a bioconductor
package for differential expression analysis of digital gene expression data. Bioinformatics
26 (1), 139–140. doi:10.1093/bioinformatics/btp616

Salmena, L., Carracedo, A., and Pandolfi, P. P. (2008). Tenets of pten tumor suppression.
Cell 133 (3), 403–414. doi:10.1016/j.cell.2008.04.013

Seth, A., and Watson, D. K. (2005). Ets transcription factors and their emerging roles in
human cancer. Eur. J. cancer 41 (16), 2462–2478. doi:10.1016/j.ejca.2005.08.013

Shain, A. H., Yeh, I., Kovalyshyn, I., Sriharan, A., Talevich, E., Gagnon, A., et al. (2015).
The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med. 373 (20),
1926–1936. doi:10.1056/NEJMoa1502583

Shao, X., Lv, N., Liao, J., Long, J., Xue, R., Ai, N., et al. (2019). Copy number variation is
highly correlated with differential gene expression: A pan-cancer study. BMC Med. Genet.
20 (1), 175–214. doi:10.1186/s12881-019-0909-5

Smith, D. I., Zhu, Y., McAvoy, S., and Kuhn, R. (2006). Common fragile sites, extremely
large genes, neural development and cancer. Cancer Lett. 232 (1), 48–57. doi:10.1016/j.
canlet.2005.06.049

Sondka, Z., Bamford, S., Cole, C. G., Ward, S. A., Dunham, I., and Forbes, S. A. (2018).
The cosmic cancer gene census: Describing genetic dysfunction across all human cancers.
Nat. Rev. Cancer 18 (11), 696–705. doi:10.1038/s41568-018-0060-1

Søreide, K. (2007). Molecular testing for microsatellite instability and dna mismatch
repair defects in hereditary and sporadic colorectal cancers–ready for prime time? Tumor
Biol. 28 (5), 290–300. doi:10.1159/000110427

Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., et al. (2011).
Massive genomic rearrangement acquired in a single catastrophic event during cancer
development. Cell 144 (1), 27–40. doi:10.1016/j.cell.2010.11.055

Tamborero, D., Rubio-Perez, C., Muiños, F., Sabarinathan, R., Piulats, J. M., Muntasell,
A., et al. (2018). A pan-cancer landscape of interactions between solid tumors and
infiltrating immune cell populations. Clin. Cancer Res. 24 (15), 3717–3728. doi:10.
1158/1078-0432.CCR-17-3509

Tsihlias, J., Kapusta, L., and Slingerland, J. (1999). The prognostic significance of altered
cyclin-dependent kinase inhibitors in human cancer. Annu. Rev. Med. 50 (1), 401–423.
doi:10.1146/annurev.med.50.1.401

Turner, K. M., Deshpande, V., Beyter, D., Koga, T., Rusert, J., Lee, C., et al. (2017).
Extrachromosomal oncogene amplification drives tumour evolution and genetic
heterogeneity. Nature 543 (7643), 122–125. doi:10.1038/nature21356

Vogelstein, B., Papadopoulos, N., Velculescu, V., Zhou, S., Diaz, L., and Kinzler, K.
(2013). Cancer genome landscapes. Science 339 (6127), 1546â–1558. doi:10.1126/science.
1235122

Wagner, A. H., Babb, L., Alterovitz, G., Baudis, M., Brush, M., Cameron, D. L., et al.
(2021). The ga4gh variation representation specification: A computational framework for
variation representation and federated identification. Cell genomics 1 (2), 100027. doi:10.
1016/j.xgen.2021.100027

Watkins, T. B., Lim, E. L., Petkovic, M., Elizalde, S., Birkbak, N. J., Wilson, G. A., et al.
(2020). Pervasive chromosomal instability and karyotype order in tumour evolution.
Nature 587 (7832), 126–132. doi:10.1038/s41586-020-2698-6

Weinberg, R. A. (1994). Oncogenes and tumor suppressor genes.ACancer J. Clin. 44 (3),
160–170. doi:10.3322/canjclin.44.3.160

Weinstein, J., Collisson, E., Mills, G., Shaw, K., Ozenberger, B., Ellrott, K., et al. (2013).
The cancer genome atlas pan-cancer analysis project. Nat. Genet. 45 (10), 1113–1120.
doi:10.1038/ng.2764

Xue, W., Krasnitz, A., Lucito, R., Sordella, R., VanAelst, L., Cordon-Cardo, C., et al.
(2008). Dlc1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular
carcinoma. Genes & Dev. 22 (11), 1439–1444. doi:10.1101/gad.1672608

Frontiers in Genetics frontiersin.org10

Huang and Baudis 10.3389/fgene.2022.1017657

https://doi.org/10.1038/s41588-019-0576-7
https://doi.org/10.1038/s41588-018-0105-0
https://doi.org/10.1038/s41588-019-0572-y
https://doi.org/10.1038/nature11247
https://doi.org/10.1200/JCO.1999.17.1.380
https://doi.org/10.1093/nar/gkq929
https://doi.org/10.1007/bf03401664
https://doi.org/10.1016/j.ygeno.2020.05.008
https://doi.org/10.1016/j.ygeno.2020.05.008
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1038/s41586-019-1907-7
https://doi.org/10.1080/10937400903158318
https://doi.org/10.1126/science.271.5247.350
https://doi.org/10.1038/nrg2593
https://doi.org/10.1073/pnas.1411446111
https://doi.org/10.1016/j.mad.2008.02.012
https://doi.org/10.1093/database/baab043
https://doi.org/10.1038/s41587-022-01357-4
https://doi.org/10.1093/nar/gkaa970
https://doi.org/10.1002/med.21288
https://doi.org/10.3389/fendo.2018.00405
https://doi.org/10.1371/journal.pone.0043689
https://doi.org/10.1016/j.mrrev.2018.06.004
https://doi.org/10.1038/onc.2012.225
https://doi.org/10.1016/0092-8674(91)90641-b
https://doi.org/10.1016/0092-8674(91)90641-b
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1186/gb-2011-12-4-r41
https://doi.org/10.1038/nature05690
https://doi.org/10.1093/emboj/16.17.5353
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://doi.org/10.1002/humu.24369
https://doi.org/10.1002/humu.24369
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1016/j.cell.2008.04.013
https://doi.org/10.1016/j.ejca.2005.08.013
https://doi.org/10.1056/NEJMoa1502583
https://doi.org/10.1186/s12881-019-0909-5
https://doi.org/10.1016/j.canlet.2005.06.049
https://doi.org/10.1016/j.canlet.2005.06.049
https://doi.org/10.1038/s41568-018-0060-1
https://doi.org/10.1159/000110427
https://doi.org/10.1016/j.cell.2010.11.055
https://doi.org/10.1158/1078-0432.CCR-17-3509
https://doi.org/10.1158/1078-0432.CCR-17-3509
https://doi.org/10.1146/annurev.med.50.1.401
https://doi.org/10.1038/nature21356
https://doi.org/10.1126/science.1235122
https://doi.org/10.1126/science.1235122
https://doi.org/10.1016/j.xgen.2021.100027
https://doi.org/10.1016/j.xgen.2021.100027
https://doi.org/10.1038/s41586-020-2698-6
https://doi.org/10.3322/canjclin.44.3.160
https://doi.org/10.1038/ng.2764
https://doi.org/10.1101/gad.1672608
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1017657

	Candidate targets of copy number deletion events across 17 cancer types
	1 Introduction
	2 Results
	2.1 Model design
	2.2 Significance across multiple cancer types
	2.3 Differential expression against normal tissue
	2.4 Pathway enrichment analysis
	2.5 Cancer type clustering

	3 Discussion
	4 Experimental procedures
	4.1 Data availability
	4.2 Differential expression analysis
	4.3 Pathway analysis

	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


